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PREFACE

This report presents the results of a study of the shape and in-
ternal structure of the Moon utilizing data from the Lunar Orbiter
Program under NASA Contract No., NSR 05-264-002, 1t is planned to sub-

mit the report, less appendix, for consideration for publication in

ICARUS,
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SUMMARY

The distribution of continents and maria and the displacement of
the Moon's center of figure from the center of mass indicate that the
average elevation of continents 18 greater than that of maria. Com—
parison of the terms in a spherical harmonic expansion of the lunar
gravity field with similar terms in distributions of highlands (con~
tinents and areas not within circular basins) reveals that the gross
shape, as reflected in the distribution of highlands, is unrelated to
the gravity field, Consideration of the Cz.o, C2,2, and C3’0 terms
in the gravity field and of the distribution of surface features indi~-
cates that excess mass underlies the maria and ecircular basins. Density
variations and internal structures which would produce the observed
gravity field are calculated for (1) a rigid Moon with a random lumpi-
ness and (2) a Moon in isgostatic equilibrium, The density contrasts
and dimensions for each model are equally probable. Orbiter data are
insufficient to determine the overall moment of inertia and whether the

Moon 13 homogeneous or differentiated,
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INTRODUCTION

Analyses of tracking data from the U.S. Lunar Orbiter seriea of
spacecraft (Michael, et al., 1967; Tolson and Gapcynski, 1967; Michael,
1967; Lorell and Sjogren, 1968) and the Soviet Luna-10 (Akim, 1966)
have yielded values for the coefficients of a spherical harmonic ex-
pansion of the external lunar gravity field. Lunar Orbiter photographs
of the backside provide Moonwide data on the distribution of continents,
maria, and circular basins (Lunar Farside Charts LFC~l1 and LFC-2, 1967).
Determinations of the lunar radius by image motion study of Lunar Or-
biter photographs (Michael, 1967) and radar observations (Shapiro et al.,
-1967) have yielded additional information on the relationship between
the Moon's center of figure and center of mass. Because of this in-
creased khcwledge. it is appropriate to reconsider the relationships
between the Moon's gravitational field, internal structure, shape, and
the distribution of gross surface features discussed previously (Lamar
and McGann, 1966a).



RELATIVE ELEVATION OF CONTINENTS AND MARIA

Determinations of the lunar radius by analysis of ranger impacts
(Sjogren and Trask, 1965), image motion study of Lunar Orbiter photo-
graphs (Michael, 1967), and radar observations (Shapiro, et al., 1967)
have yielded values which are inconsistent with the elevations shown
on the charts of the Aeronautical Chart and Information Center (ACIC),
U.S. Alr Force, St, Louis. - The origin of coordinates for the charts
is a mean sphere which best fits the center of volume, whereas the
origin for the other determinations is8 the center of mass, Thus it
has been suggested (Sjogren, 1966; Michael, 1967; Shapiro, et al.,
'1967) that the discrepancies may be the result of displacement between
the Moon's center of figure and center of mass.

The relationship between the center of figure and center of mass
must be known to accurately determine the relationships between the
gravity field, shape and internal structure. For such studies it will
be necessary to prepare contour maps showing elevations with respect
to the Moon's center of mass. The Moon's gross shape has been approxi-
mated on the assumption of a systematic difference in elevation between
continents and maria (Lamar and McGann, 1966a). In their analysis of
the relationships between the Earth's shape, gravity field and internal
structure, Munk and MacDonald (1960a) followed a similar approach by
assuming a systematic difference in elevation between continents and
ocean basins,

Lamar and McGann (1966a) suggested that the average elevation
(relative to the center of mass) of the continents is 3 km greater than
the maria. Goudas (1966) questioned this assumption, pointing out that
recent stereoscopic elevation determinations reveal no such relation-
ship. The origin of coordinates for these elevations 1s a mean sphere
which best fits the points or the center of volume. The relationship
between the center of volume and center of mass must be known before
any systematic difference in elevation between continents and maria
can be established from stereoscopic observations.

The problem may be visualized by imagining that the Earth lacks

oceans, which provide a convenient level surface centered on the Earth's



center of mass. An observer on the Moon studying the Earth's shape
by stereoscopic methods or observations of the limb would logically
chooae the Berth's center of volume as the origin of coordinates, 1If
our lunar observer viewed the Earth with the center of the Pacific
Basin on one limb, the center of the Pacific Basin would have about
the same elevation as continental areas on the Earth's opposite side,
relative to a coordinate system with its origin at the center of the
Earth's disk or center of volume,

Similarly 4in the case of the Moon, it is possible that the con-
tinents are systematically higher relative to the center of mass and
that some maria surfaces, relative to the center of figure, are higher
than some continental areas. Therefore, it will not be possible to
Vuse the gtereoscopic height determinations to establish any systematic
Moonwide difference in elevation between continents and maria until
such observations are transformed so that the origin of coordinates
is the center of mass, The authors (Lamar and McGann, 1966a,b) were
thus incorrect in stating that Hedervari's analysis of Baldwin's (1961,
1963) data was pertinent, and the relative accuracy of stereoscopic
determinations by different investigators discussed by Goudas (1966)
has no bearing on the problem,

As pointed out by O'Keefe and Cameron (1962) prior to the Ranger
and Lunar Orbiter programs, the Moon's center of disk was known to be
situated about 1 km south of the center of mass, O'Keefe and Cameron
made a least squares solution to determine the sphere which most nearly
fits the coordinates determined from stereoscopic observations cataloged
by Schrutks-Rechtenstamm (1958). 'The origin of Schrutka~Rechtenstamm's
¢oordinates 18 a center of disk derived from 1imb observations.

O'Keefe and Cameron found that the center of the mean sphere has
the follewing coordinates with respect to the origin: y = -0.4 t 0.4 km
and 2 = -1,4 £ 0,4 km where the x axis points to the Earth, y points
east, and z 1s the north polar axis., Their analysis indicates that
the center of the mean sphere, fitting the stereoscopic observations,
should lie about 2 km south of the center of mass. This displacement
of the center of figure from the center of mass is consistent with the

higher proportion of continental areas in the southern hemisphere



‘compared to the northern hemisphere (Fig. 1 and 2) and with a systematic
excess in elevation of continents over maria. Although the east-west
‘geparation is small and uncertain, the apparent direction of separation
is opposite of what would be expected from the greater proportion of
continental areas in the western hemisphere and from an excess in ele-
vation of continents over maria,

Analysis of tracking data from the Ranger flights to the Moon
(8jogren and Trask, 1965) and the first photographs (Lipskii, 1961)
of the Moon's farside provided the first indication that a relationship
analogous to that between the north and south hemispheres exists be-
tween the Moon's farside and Earth-facing hemispheres. The farside
pletures indicate that there is a much smaller percentage of maria on
the farside than on the hemisphere facing the Earth. If a systematic
difference in elevation between continents and maria exists, the Moon's
center of figure relative to the center of mass should be displaced
away from the Earth. Tracking of the Ranger spacecraft revealed that
the radius from the center of mass is about 3 km less than the value
indicated on the ACIC charts (Sjogren and Trask, 1965). Since the
origin of coordinates for these charts is based on a mean sphere de-
termined from stereoscopic observations, the Ranger data indicate that
-the center of figure is displaced away from the Earth. This displace-
‘mcnt could have been predicted from the relative absence of maria on
the farside and the assumption of a systematic excess in elevation of
the continents over maria,

Preliminary determinations of the Moon's radius with respect to
the center of mass in the equatofial region facing the Earth have been
accomplinhid by analysis of image motion on pictures taken by Lunar
Orbiter (Michael, 1967). This investigation also revealed that the
radii are systematically lower by 1 to 3 km (average about 2 km) than
‘the radii on the curve obtained from harmonic analysis of the ACIC
selenodetic control system by Bray amd Goudas (1966). Measurements
of the lunar radius, made by eoﬁb&n&ﬂg radar determinations of the dis-
:tancCran(uuh-aarth points on the Moon, and range data of Lunar Orbiter 1
and, 2 ‘ales produced values about 1 to 2 km less thdn the radii determined
'ﬁgon ﬁhc stereoscopic obs.rvationc (Shapiro, et al., 1967). Thus the
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Fig. 1 Earth-facing side of the Moon showing distribution of continents, mare, and circular basins.
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analysis of data from the Lunar Orbiters substantiates the hypothesis
of a systematic excess of elevation of continental areas over maria,
which is related to a displacement of the center of figure from the
center of mass.

As ghown in Fig. 3, 1if a systematic difference in elevation,
amounting to H, exists between continents and maria on opposite hemi-
spheres, then the displacement between the center of mass and center of
disk is H/2, The displacement of the center of mass 1 km north of the
center of disk on the Earth-facing hemisphere is consistent with the
higher percentage of continental areas in the Moon's southern hemisphere
and with a systematic difference in elevation of about 3 km,

The displacement of about 2 km between the Earthward and farside
hemispheres (corresponding to H/2 on Fig. 3) leads to an unexpectedly
high eatimate of about 5 km for the excess in elevation of continents
over maria (H on Fig. 3). However, the radii determinations by image
motion are concentrated in the equatorial region (Michael, 1967), which
is predominantly maria; thus the relative percentage of maria on the
Earthward side may be overemphasized. The existing data appear to es—
tablish that continents are systematically higher than maria relative
to the Moon's center of mass. Additional studies are required to de-~
termine the magnitude of this difference and toc learn the average depth
- of the circular basins.

As previously noted (Lamar and McGann, 1966a), if the Moon's
density distribution is spherically symmetrical, then to a first ap-
proximation the orientation of the axes of the principal moments of
inertia would be related to distribution of continents, low-lying maria,
and circular basins., Low-lying areas would be concentrated in polar
regions and around an axis in the equatorial plane at 90°-270° east

longitude.
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Fig. 3 Relationship between center of mass (c.m.) and center of figure
(c.f.) for concentration of maria and continents in distinct
hemispheres, A systematic excess in elevation (H) of continents
over maria with respect to a level surface is assumed,



Figures 1 and 2 show the Moonwide distribution of continents,
maria, and circular basins greater than 300 km in diameter. The maps
were compiled from the USAF Lunar Reference Mosaic (1960), the USAF
Project Apollo Lunar Planning Chért (1962), Whitaker, et al. (1963),
Lunar Farside Chart LFC-1 (1967), and by study of Lunar Orbiter photo-
graphs. These maps indicate that the Moonwide distribution of low-
lying maria and circular basins is the opposite of that required to
explain the orientation of the axes of principal moments of inertia,
That is, low~lying maria and circular basins appear to be concentrated
in equatorial regions and around an axis in the equatorial plane at
0°-180° east longitude.

In order to determine the orientation of the principal axes of
the distribution of gross surface features and models of internal struc-
ture, it is convenient to express the distribution of surface features
in terms of the coefficients of spherical harmonic representations of
functions analogous to the ocean function of the Earth presented by
Munk and MacDonald (1960b). A computer program utilizing the equations
presented by Munk and MacDonald was used to calculate coefficients of
" spherical harmonic expansions for distributions of gross surface fea-
tures, Because the expansion ugsed by Munk and MacDonald is different
from the expansion of the gravity field in spherical harmonics given
below, each coefficient in the functions was multiplied by (n-m)!/nt
to permit direct comparison with similar terms in the gravity field.

In calculating the coefficients, the proportion of the surface
feature considered was tabulated for squares 10 degrees on each side
from Fig. 1 and 2, The values of the coefficients are listed on Table
I. Distribution 1 represents a continentality (or non-maria) functionm.
The coefficients of Distribution 2 express the distribution of areas not
within the outer rim of a circular basin. 1In defining the area within
a circular basin, questioned outer rims were ignored and incomplete
rings were completed.

Muller and Sjogren (1968) have shown that the most youthful ap-
pearing circular basins on the nearside (Imbrium, Serenitatis, Crisium,
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Humorum, and Nectaris) and Orientale Basin on the limb caused perturba-
tions in the motions of Lunar Orbiters. They suggest the perturbations
are due to excess mass beneath these basins, Comparison of the outlines
of the gravity anomalies shown on their map with Fig. 1 indicates that
the excess masses are concentrated within the inner rings of the Imbrium
and Nectaris Basins. For the Crisium and Humorum Basins, the existence
of an outer rim or ring relative to the excess mass concentration is

not certain. In the case of the Serenitatis Basin, the existence of

an outer ring 1is not clear. A suggestion of an outer rim appears

along the northeast shore of Lacus Somniorum and the south shore of
Mare Vaporum and the area to the southeast along the Hyginus Rille.

Desiree Stuart-Alexander and Keith Howard (personal communications,
1968) have made a preliminary study of the relative ages of circular
basins greater than 300 km in diameter on the basis of (a) ratio of
basin size to size of larger superposed craters, (b) sharpness of scarp,
(c) presence of rim deposits, (d) completeness of outer ring, (e) cir-
cularity, (f) completeness of an inner ring, and (g) subjective rank
of ovérall age. Based on their analysis, Serenitatis is the oldest
of the nearside basins which perturbs the motions of the Lunar Orbiters.
They consider the following additional basins to be younger than Seren-
itatis: Grimaldi, Bailly, Moscoviense, and unnamed basins identified
by the coordinates of their centers, 45W, 558; 140E, 5N; 165E, 358;
130E, 708; 155W, 5S; and 130W, 5N. Distribution 3 represents the areas
outside of the outer rims of circular basins as young as Serenitatis,

In comnsidering the significance of the inner and outer riﬁgs or
rimg, it is important to note that the development of the inner ring
appears to be dependent on the diameter of the outer ring. For example,
in the following small basins younger than Serenitatis, the inner ring
is absent: Bailly; 140E, 5N; and 165E, 35S. For the following slightly
larger basins younger than Serenitatis, the inner ring is indistinct
or incomplete compared to the outer rim: Moscoviense; 130E, 70S; and
155W, 58. Therefore, in considering the distribution of areas outside
of inner rings, single-ringed basins were ignored. Distribution 4
represents areas outside of the inner rings of the basins which Muller



and Sjogren (1968) suggest are underlain by excess mass, and the fol-
lowing additional basins: Grimaldi; Mdscoviense; 45W, 55S; 130E, 70S;
155w, 58; 130w, 5N.

Because of variations in illumination, the tone of flat lying
areas differs with different photos and the precise distribution of
maria 1s difficult to determine., The outlines of the circular basins
are also commonly obscured. Although the distribution of gross surface
features shown on Fig, 1 and 2 may be modified by more detailed studies,
the values of the coefficients in Table I should not change signifi- '

cantly with subsequent analysis of improved maps.
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LUNAR GRAVITY FIELD

The lunar gravitational potential function is expressed as the
following series expansion in spherical harmonics with coefficients
C and 8 :

n,m n,m

» 4

© n n
= B a
1] g [1 + nZZ mZo - Pn'm(sin ti).)(Cn’m cos mA + Sn,m sin mli}

where p 18 the product of the gravitational constant and the mass of
the moon, r 1s the radial distance from the center of the moon, a is
the mean radius of the moon, Pn,m are associated Legendre polynomials,
¢ is the latitude, and ) 1is the longitude. This is the form of the
potential recommended by the International Astronomical Union and has
been adopted in analyses of the Lunar Orbiter tracking data (Michael,
et al., 1967; Tolson and Gapcynski, 1967; Michael, 1967; Lorell and
Sjogren, 1968). The values of the coefficients in the gravity field
presented by Lorell and Sjogren (1968), Tolson and Gapcynski (1967),
and Akim (1966) with the correctiom in sign of the terms with odd value
of m, suggested by Tolson and Gapcynski (1967), are presented on Table II.
| It is interesting to note that in all three analyses the Cz'i term
departs significantly from zero. In Lorell and Sjogren's (1968) anal-
ysia, the 52‘2 term also departs from zero. Jeffreys (1962, p. 141)
pointed out that the lack of a wobble of the Moon's axis of rotation
indicates that the C2,1 and 82'1 terms in the gravity field must be

very nearly zero or no more than 0,001 of the C and 82 o terms, If
’

the 82.2 term is not very close to zero, then tiézresulting torque
should cause the Moon to rotate until the line pointing toward the
Earth is a principal axis and this term vanishes. According to Michael
(1967), the 02,1‘ 82’1, and 32,2 coefficients have tended to decrease
as additional tracking data have been analyzed. It is posasible that,
with sufficient data and further analyses, these terms will completely

vanish,



.

*(9961 ‘wpiy) Ql-®uny pue
(8961 ‘ueaSofs pue 12107 {7961 ‘Pisudoden pue ©wOSTO])

8193FqI0 IPUN] WOIJ POUTWASID(Q UOOR JO PTOT4 L3ITARI) - II 9T9BL
- - - 110" ¥ 1102°- - - 0
- - - ZTI0° F ¥wELT® - - 0
- - - 1Z10° ¥ 6801°~ - - 0
- Z000° F £000° - - Z000° . €£000°~ - I3
- 100" % €100°- - - 100°* ¥ 8000°~ - y
- Z00* ¥ 8L00°'- - - 700° ¥ 1L00°- - €
- 800" ¥ €0Z0°- - - 600° F TYEO® - r4
- 1€0° # 6280° - - LEO* ¥ G8E0°~- - 1
- - - 1Z€0° ¥ Y191°~ IL1° F S06S°~ - 0
1100° ¥ 6L00° €00 ¥ 1100° - 1100° ¥ 1600° €00* ¥ L000*~- - Y
S100° ¥ 9.20°- 900° ¥ 1000°- - 1200° ¥ %#910° 800" ¥ 2800'~ - £
SE00°* F 1S00° €10° ¥ ZL00* - %€00° ¥ 19€0° 010° ¥ 1100° - r4
1500° ¥ %950° 820" ¥ 16€£0° - 9%00° F 9€21°- 9€0° ¥ 09S1°*- - 1
- - - 0610° ¥ I%60° 8C1° 7 86.0° 0lZ° ¥ €£€° 0
$110° ¥ 96%0°~ 810° ¥ €%00°'~ - 6.00° ¥ $9Z0°- S10° ¥ LIEO" - €
€900° ¥ 00T0°- €€0° ¥ L¥10°~ 9%0° ¥ Z0.00"-| 8S00° ¥ /SZ0O"~- 820° ¥ Y¥6Z1° L%0° ¥ 811" r4
€00 ¥ O%L0° €50° ¥ T9/1° Z€0° ¥ 8L1° 6Z00* ¥ 9¢£9¢° 8%70* ¥ z10€" 9Z0° ¥ 896° I
- - - 7920° ¥ €TT72°- 081° ¥ €LLE"~ 660° ¥ £9¢°— 0
GEEO0* * OIET" GZ0® ¥ Z¥Eo" -~ SY10° ¥ 6€10°~ | 6%Z0° ¥ 161C° 620" ¥ THOT* Z10° ¥ oy1° rA
6€T10° ¥ 0S10° 6€0* 3 0800° 8GE0* 'F 19£0°~ | I€10°  8(80°~— 160° ¥ 1991°~- 6G0° F LG1°~ 1
- - - €910 ¥ €920°C— IT* ¥ 9650°2- Zz° ¥ 90°C- | O
(8961) weasols | (/961) Tisukoden | (99671) WPV (8961) u=adofs (L961) FTAsudoden (9961) WAV w
pue 119107 pue uwosyoO] pue 19107 pu®B uO0sSIOI
w‘u ) w‘u
01 x S 01 x 0

7~

Qll



-15=

ORIENTATION OF PRINCIPAL AXES

A Cartesian set of coordinate axes fixed in the Moon are defined
with the x and y axes in the equatorial plane, the x axis directed to-
ward the mean direction to the Earth, and the z axis directed north
along the axis of rotation. The second degree terms in the gravity

field are related to the moments and products of inertia as follows:

2
Ixx A Ixy = 2Ma 82’2
I =B=A+ 4Mazc I = Mazc
Yy 2,2 Xz 2,1
I =Cm= A+ MaZ(ZC - C, ) I = Mazs
b4 4 2,2 2,0 vz 2,1

where A, B, and C are the Moon's principal moments of inertia, M is
the Moon's mass, and a is the Moon's mean radius.

The second degree terms in the spherical harmonic representation
‘of the distribution of surface features are related to the moments
and producta of Iinertia as follows:

- .§JL 4'- ] 1 1 - 3 % ‘} - §_1l 4 1
Lex =3 98 [C0,0 ¥ 10%2,0 ~ 50,2 Ly =5 985,

N P I R
Loy =73 98 |%,0 * T0%2,0 * 5%2,2 e =5 920y,

s 8n 4f, 1., o b b4,
Lz =73 %2 [%,0 Ecz,o] I, =75 985

where o is the load per unit area due to the higher elevation of con~
tinents and areas outside of circular basins.

The orientations of the principal axes of the continent distribu-
tion, the non~circular basin distributions, and the overall mass dis~
tribution expressed by the gravity potential coefficients indicated
in Table III were determined by the above equations and the equations
presented by Munk and MacDonald (1960b). The east longitudes of the

axes of least and greatest moments of inertia in the equatorial plane



-16=

*829189p Uyl IpnitleI-0o ST ¢ pue

apn3ISuoT 3I8®e ST Y {S9anjeej 90®vJaAns JO SUOTINGIIISTP JO suofirjussaidea dFuomiey TedFIoyds

JOo SIULTOFIJo00 pue pIOTI L11Aei8 ivuny wolj peulwislap soxe Jedyourad jo suoFlejuatig - III 9T9el

8°99 06t 1A 0°99 1°6LT | L°8IT | 0°GSE § VOTINQTIAISTQ
£°68 6°Ct LANA 9°68 9°GLT | §°C11 | 8°¢C € UOTINGTIISIQ
€°1L €°6¢e 1°0% 1°99 2°1LT | €°911 | 6°6%¢ T UOTINQIIIST(Q
G°S6T 0°1¢ 8°7C7¢ | €TEIT| 9°8LT | T°60T | €°L1 1 UOTINGTIIST(Q
9°yhe 0°88 9°y%e | L°68 9*%L 0°8LT | 1°9S¢ (8961) wailofs pue T[a107]
8% 2°98 Ly €768 9°9Lz | T°9L1 | §°€S€ | (L961) Tisukodep pue uosyof
8°¢C 1°98 0°€ 0°16 1°€LZ | 0°9LT | 0°91 (9961) WAV
X ¢ X ¢ X ¢ X
auetd ¥Y3I8UT JO
Te1a03®nba uy eIjIAUT eI3lIBUT JO Juamon BJ31I3UT JO
Jo juswmow WNWIUTK JUSWON UNWTUTK | °23IRTPSWIdU] | JUSWOW WNMTXER




-17~

related to the gravity field and the spherical harmonic representations
of surface features were determined by tan 2\ = 82’2/02’2. The east
longitudes corresponding to the axes of least moment of inertia on
Table III were identified as representing the smaller value of the
quantity: - C2,2 cos 2\ - 282'2 sin 2.

For stable orientation, the axis of greatest moment of inertia
corresponds to the rotational axis and the axis of least moment lies
along a line pointing to the Earth. The orientations of the principal
axes, determined from the coefficients in the gravity field presented
by Akim (1966) and Tolson and Gapcynski (1967), lie within 5 degrees
of the stable orientation., For the coefficients presented by Lorell
and Sjogren (1968), the axes lie within about 15 degrees ff the stable
orientation. The principal axes of the distributions of surface fea-
tures are within 30 to 40 degrees of an orientation opposite to a stable
orientation. That is, the axes of least moment of inertia lie within
40 degrees of the polar axis and the axes of greatest moment are within
30 degrees of the center of the disk. These oriemtations and the lower
elevation of maria and circular basins verify the authors' earlier re-
jection of a homogeneous density distribution within the Moon. The
effect of an excess load (o) due to the greater elevation of continents
and areas outside of circular basins is more than compensated for by
excess mass beneath the maria and circular basins.

Significantly, Nash (1963) suggested that excess mass beneath the
maria may be the explanation for the relative lack of maria on the
Moon's farside. Nash hypothesized that the Moon was locked into syn-
chronous rotation, with excess mass beneath the maria facing the Earth
in a stable orientation. He also suggested that the maria resulted
from the impact of objects denser than the Moon and that the apparent
concentration of maria in the plane of the ecliptic may be explained
by an asteroidal origin for the impacting objects. However, any pro-
cess of maria formation which is random and leads to an excess of mass
beneath the maria surface could result in the present distribution of
maria with respect to the Moon's rotational axis and the direction to
the Earth. The present distribution could be the result of wander of
‘the Moon's axes to the position of stable equilibrium, regardless of
the original cause of the density distribution.
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MOMENT OF INERTIA

Tolson and Gapcynski (1967) have calculated the value of the
quantity q = 3C/2Ma2 = 0,5895 + 0,05 where C is the moment of inertia

about the axis of rotation from their values of C, .and C Accord~

ing to Jeffreys (1962), for a chemically homogenegag moonz;ith increase
in density with depth due to internal pressure, q = 0,596, According
to our calculations (Lamar and McGann, 1966a) for a linear increase‘
"in density from 3,2 gm/cm3 below a thin crust to 3.76 gm/cm3 at the
center, q = 0,592, and for a more extreme differentiated model in
which the density increases linearly from 2.8 gm/cm3 at the surface
to 5.0 g;n/cm3 at the center, q = 0.568. The problem of the overall
moment of inertia has been considerably improved by the orbiter data
and 1£‘is apparently no longer necessary to consider the possibility
that the density of the Moon decreases with depth, However the data
are still insufficient to decide whether the Moom 1is differentiatad‘

or chemically homogeneous.
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INTERNAL STRUCTURE

In this section we consider internal density distributions which
reconcile the coefficients of spherical harmonic expansions of the ex-
ternal gravity field with similar coefficients representing surface
feature distributions, Arbitrary cutoffs ;re assumed between maria
and continents and between circular baainu and areas outside of cir-
cular basins, If such models reflected the true intermal structure,
the principal axes of the distributions of highlands (continents and
areas outside of circular basing) would correspond to the Moon's prin-
cipal axes. If excess mass beneath the marias or circular basins is
greater than the load due to th&uhigher elevation of continents and
areas outside of basins, the Moon's axis of least moment of inertia
will correspond to the axis of greatest moment for the distribution
of highlands. M

As noted in the previoua section for the diutributions consgidered,
the principal axes of the surface features are no closer than 30 to 40
degrees to such an orientation, Because of this, and the preliminary
nature of the coefficients of the gravity field, comsideration of more
elaborate models of internal structure ig not now justified. Eventu-
ally it will be appropriate to consider models of internal structure
in which the mass effects beneath individual basinsg 1s considered a
function of the aga and size of the feature, If the principal axes
for such models correspond to the Moon's principal axes, it would be
of interest to consgider higher order terms in the gravity field and
distribution of surface features,

In the present analysis, only the terms which reflect the oblate-
ness (02 o) ellipticity of the equator (02 5)» and north-south asym-
metry (03 o) are considered. The calculations give an idea of the
internal density variations required to reconcile the gravity field
and the gross shape as reflected in 'the distribution of surface fea~-
tures, The following models of {internal structure are considered:

(1) The Moon is assumed to be a rigid'boﬂy not in isostatic equilibrium;
the density variations are assumed to be the result of random inhomo-
geneities as suggested by Urey, Elsasser, and Rochester (1959).
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;;(2) The Moon is assumed to be in isostatic equilibrium, and differences
‘iin elevation are assumed to be compensated for by variations in crustal
‘thickness as suggested by O'Keefe and Cameron (1962), For this model
‘the required density variations beneath the crust could be due to tem~

tparatutm‘difquﬂmnam related to thermal coanvection in the mantle, as
prnpou&d by K@p&l (1962) end Runcorn (1962). From Jeffreys (1962, p.
182) the equaﬁiau for the gravitational potential of a surface distri-
bution over a sphere of radius R is

4CGoR

U Gn+ D

| ]
Pa'm(sin ¢)(cn,m cos mh f Sn o sin ml)

n-Z mFO s

where G is tha;gravitatianal;eangtaat,,a is the surface area density

over the sphsté expressed in a spherical harmonic representation with
coefficients C;.mvand S;’m, and r 18 the distance from the center of

the sphere. From the equation for the lunar gravitational potential,
we derive the following expression for the effects on individual co-

'efficients of the gravity field:

4waRn+2

_Mm
C = a
B (9n + 1)Ma

where M is the mass and a is the Moon's mean radius.
Assuming the-Moon-is.-homogeneous and substituting the expression
for the mass of a homogeneous sphere, we derive

.
B dn.ma/3
where H 18 the height of a surface layer, a is the Moon's mesn radius
(1738 km), and d o 8 (2n + 1) times the ratio of the coefficient in
the 3rav1ty field to a similar term in the distribution of the eurface
1aya:. The surface layer {s assumed to have the same density as the
Koan. ‘Table IV shows the excess elevation (H) of maria and circular
‘lhasins required to produce the gt&viey field determined by Tolson and
Gape skl (1967) from the diatributioha of nurfac¢ featurea‘ However,




21~

the available data indicate that maria and circular basins are low in
elevation, thus these calculations indicate that the assumption of a
homogeneous density distribution is false,

Dist. 1 Dist, 2 Dist, 3 Dist., 4
| CZ,O 4,1 7.1 13.5 ‘ 23.1
) CZ,Z 2.6 2,5 4,5 10.2 3
03'0 1.5 8,5 4,2 6.0

Table IV = Excess elevation (km) of maria and circular basins
required to produce coefficients in the lunar gravity field

determined by Tolson and Gapcynski (1967) from distributions
of surface features and a homogeneous Moon,

To estimate simple mass distributions which will produce the
values of terms in the gravity field, it 1s necessary to derive gen~-
eral equations analogous to those presented in'an earlier paper for
the second order terms (Lamar and McGann, 1966a). In integral form

the effect on individual coefficients in the gravity field {s

" a+H
C - e J
o (2n + l)p a

Ap(r)dr

where H 1s the assumed excess elevation of continents and areas out-
iside of circular basins, Pa is the Moon's average demnsity (3,33 gms/
em ). and Ap(r) is the excess in demnsity of material beneath maria
and circular basins,

For a rigid, lumpy model, we assume a linear decrease in the den-
sity contrast with depth, or Ap(r) = Ap(ui(r/aé, where Ap(a) is the
density contrast at the surface; by integration

dn m H
do(a) = p, |=3*= = 7|0 + &)

It is assumed that the density of material naar the surface is equal
to tha average density of the Moon,



For the extreme case of a rigid, lumpy.mmdcl, we assume th&t maria
and eircular basins are directly underlain by a layer of nickel-iron,
The thickness (t) of the layer is found to be

0 d a
£ ? -a ) [g - n5m ]
pi pa

where Py is the density of nickel iron (7.8 gm/cmB).

If topographic irregularities are assumed to be compensated for
by variations in thickiess of crust floating on mantle, we assume zero
thickness for crust beneath maria and circular basins, compensation
at depth, D, and a density excess in mantle beneath circular basins
and maria which decreases 11naar1y with depth; by integration

d ,

(n + 4) pa n,m D H

bp(a) = . 5 [ gh'(oc—pm);-pc';]
[1 - (a+ &) ;]

where p 1is the density of crustal material and Py 18 the density of
the mantle directly beneath maria and circular basins., We assume a
condition of zero stress at the Moon's center; from Lamar and McGann
(1966a)

prp(a) = '(:':}';‘Ej' [pc % - (pm - pc) "E']
a

We assume that the average density of crustal material is 2.8 gm/cm3

and that the density contrast between the crust and mantle (p = p.)
is 0.4 gm/cm . Accepted values for the Earth are = 2,84 gm/cm3 and
(pm ) = 0 43 gm/cm (Worzel and Shurbet, 1955)., For the second
order terms and the relations

- - o - [A +B _ ] ' o
2,0 = ™2 w2 L2 Cp C0" 2



1 ' 1 2
2,2 a2 20277 %
C = A C = A B - A 2 2
B - B o T » Y = T . C = -5— Ma

where C, B, and A are the principal moments of inertia of the Moon,
the above equations reduce to those presented in Lamar and McGann
(1966a) .

Table V lists values of parameters for the models of internal
structure calculated by the above equations from the coefficients
for distributions of surface features and Tolson and Gapcynski's (1967)
determination of the gravity field,



Rigid Models Isostatic Model
H |'Density con~ | Thickness of | Density Con- Depth of

(km) | trast, Ag(a) Nickel-Iron trast, Ag(a) Compensation,
(gm/em?) Layer, t (km) (gm/cm?) D (km)
Dist. 1| C, o 3.0 0,081 5.3 0.017 44,3
5,0 0.10 6.8 0.018 58,5
CZ,Z 3.0 0.064 4,2 0.011 35,7
5.0 '0.087 5.7 0.011 49.9
Cy o| 3.0 0.060 3.3 0.0064 29.8
5.0 0,087 4,8 0.0066 43,9
Dist, 2 CZ,O 3.0 0.12 7.5 0.032 62.0
5.0 0.14 9.0 0.033 76.5
02.2 3.0 0.064 4,1 0.011 35.4
5.0 0.087 5.6 0.011 49.6
03’0 3.0 0.15 8.6 0.042 73.8
5.0 0.18 10.1 0.044 88.6
Pist. 3[C, o1 3.0 0.19 12,3 0.068 101.7
5.0 0.21 13.8 0.071 116.9
c,, 30| o0.08 | 56 0.019 46.5
5'01, ‘011; e ,,779,__W 4vWWO.OZO 60,7
03’0 3.0 0.097 5.4 0.019 46,5
5.0 0.12 6.9 0.020 60.8
Dist. 4 Cz’0 3.0 0.30 19.4 0.015 169.6
‘ 5.0 0.32 20.9 0.016 187.4
C2,2 3.0 0.15 9.8 0.048 80,7
5.0 0.17 11.3 0.050 95.5
CS,O 3.0 0.12 6.7 0.028 57.3
5.0 0.15 8.2 0.029 71.8

Table V -~ Parameters for models of internal structure required to pro-

duce coefficients in the lunar gravity field determined by
Tolson and Gapcynski (1967) from distributions of surface

features.

The quantity H represents assumad values of the

excess elevation of continents and areas outside of circular

basins.
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CONCLUSIONS

An excess in density beneath the lowlands (maria and circular
basins) 1s indicated by the relation between the C2,O’ C2,2’ and C3’0
terms in the gravity field and the distribution of surface features
(Table V)., However, the density excesses corresponding to the three
terms differ by no more than a factor of three for the three models
of internal structure considered,

Distribution 4 most closely corresponds to the existence of
"mascons" beneath the imner rims of the most youthful appearing cir-
cular basins, as revealed by the analysis of Muller and Sjogren (1968).
I mascons are assumed to be masses of nickel-iron, they correspond
te a layer averaging about 12 km thick, as determined from Table V,
or more realistically, a layer several tens of kilometers in thickness
with a 10-20% excess of nickel=-iron,

The isostatic model fits the data equally well, The required
depths of compensation for this model appear reasonable; they are not
sisnificantly greater than corresponding depths determined for the
Earth., The required excess in the density of the mantle beneath cir-
cular basins and maria for the isostatic model could be explained by
2 lower temperature of a few hundred degrees centigrade.

Data from the Lunar Orbiter Program have greatly improved our
knowledse of the Moon's gravity fleld and gross shape as reflected in
the distribution of surface features, However, these data alone are
insufficient to determine which model of internal structure Is most
probable, or the nature of the processes which have shaped the Moon's

surface,
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Appendix
Computer Programs

This appendix contains listings, explanations and flow diagrams
for all programs written for this project. The "Spherical Harmonics"
program consists of a main routine and two subroutines. "MAIN" as~
sumes the surface of the Moon to be divided into 10° squares for cal-
culation of the spherical harmonic coefficients of the distribution
of surface features. The subroutine "PRNT" produces a table of the
distribution of the surface features as determined from maps of the
Moon and is the input to the program. The subroutine "TENSR" generates
the tensor for computing the moments of inertia about the principal
axes, and their orientation. The "Moon Modeling" program computes

the parameters for different models of internal structure.
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Table 1--Symbols Used in "MAIN" routine of Spherical Harmonics Program

Variables
" RN | Label for data identiffcation
THTA |8, colatitude
ELAM ; A, east longitude
F % f(8,)); continentality function
ELC) AX
THC) A8
SITA sin 0
C¢TA cos 6
Fl (m + 1)!
F2 (n~-rx)!
F3 (n-m-1r)!
F4 r!
Q (cos 8 - 1)(nrmrr)
R (cos 8 + 1)F
HASU | [(cos 6 ~ D™ T(cos 6 + 1)1/ [(m + ¥)!(n -)!n~-m-=-1)!ir!l;

i one term of summation

PISU (cos 8 - l)n_m—r(cos 0 + 1)r
z 120 m+)!(n-v)!i(o~-m~-r1r)ir!

F5 (n - m)!

F6 (n + m)!

SM (sin 8)®

TTN 2®




Fortran
Nomenclature

SIML

coML

APAL

BPAL

. F7

CONST

CSuM

SSUM

i

(CNM = CIS

SNM = SIS

ICC

ICCK

IPRT

ITR

-3

Table l--continued

Explanation

(n~-mi(n + m)i(sin o))"
oD

pﬁ(cos 8) =

(cos 8 - D" ™ F(cos 8 + 1)

{=0 (m + r):(n - r)!(n -m - r)zr:

sin mA

cos mA

[(p:(cos 6)sin 9)i + (p:(cos 8)sin e)1+1]/2.
[(cos mx)i + (cos ml)i+1]/2.

[(sin mk)i + (8in mA)1+13/2.

f(e,l)[(p:sin B)i + (pzsin 9)1+i] Bcos mA)i + (cos ml)

418800
2. z. |

f(egl)[szain 9)i + (pzsin 9)1+1] Esin m}.)i + (sin mX)
2. : 2.

4 “] 8641

n!

(2n + Dn! / 2x(n + m)! or
(2n + D) /b

summation of’C terns

summation of S terms

cn,m } coefficients of a surface spherical harmonic
s

am ‘expansion of the gravity field
’ o
Integers

number of continentality function distributions to
be run :

run counter

switch for requesting printout of table of continen-
tality function

switch for requesting "TENSR" calculations
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Table l--comtinued

i

R

Fortran

Nomenclature Explanation
NC number of colatitudes considered
NL number of east longitudes considered %
NMN number of n,m combinations considered }
NMNT counter for number of n,m combinations }
LIM upper limit for summation
IFL m+r) ) 1
1F2 (n - r):
IF3 (n-m - r)
IF4 r > last term of factorial
IF5 (n - m)
IF6 (a + m)
1F7 n
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‘Table 2--Symbols Used in "TENSR" subroutine of Spherical Eavmoniagy?ﬁ@gynn

Fortran - )
Fomenclature Explanation
Variables

co0 0,0
C20 CZ,O
c21 Cz’1
c22 : 02’2
821 82.1
822 | 82’2
M. I
EM2 I

yy

i

EM3 1 : ,

zz \  matrix elements
EM4 I, 1I : T

1 xy yx

EMS Ixz, sz
EM6 I ,1I

yz© zy J
A Coefficient of 13
B Coefficient of I2
C Coefficient of I
D constant term of cuble
Q % )
TEST
sI »Storage locations used in finding roots of cubic
P e ot 6 e e Vi ;,.,  et e e e ;.W:‘:” 7S

- PART

céer ||



33

Table'2%~éoutinu§d“

Nozzzziizure ~ . Explanation _

Y1l

Y2 storage locations used in finding roots of cubic
Y3

z1 |

‘22 ; roots of the cubie

23

EﬁﬁpE E greateat moment of inertia, Ix
‘Y?ﬁLE . intermediate moment of inertia, Iy

Zﬁ@LE i least moment of Inertia, Iz

HL . L

H2 E Iyy - Ix diagonal terms of orientation matrix
H3 oI, - I

X3 s mii@i z

X2 { m&/&* \, direction numbers

X1 e )

81 | [(@z/w*)z + (wy,wt)z + Q@iﬁmﬂ)z}k

CALP1 cos ay N

CBET1 cos B8, direction cosin@s

CGAM1 | cos v, |

AML1 A;; east longitude (radians) of x~-axis
TIRAL tan 8,

“THAL | Blg,colatitude (raﬂi&nﬂ)ﬁbf x~axis ;
AMLIY Ay3 east lonsituée (dqgreel) of xeaiis

b e e e o S ke a2 e S e w5 e e e i e s 0 s e wne i i



E
B

#,

‘Fortran - o ! .
‘Nomenclature Fxplapation
AML12 Al + 180°
THTALL elzvcolatitude (degrees) of x~axis
THTAL2 61 + 180°
" (this pattern is repeated for the y and aisxgu) 
X Cy,2/52,2
b aatid m g e 2 . 919
TP1 taz:l $ = 102’2/82’2 + (gcz’zlsz’z) + 1; )
PH1 g VOi; esst longitude (radians)
sPHL | sin g
CPH1 . cos ¢,
i i v
P11 | moment of inertia about Qi
PHI1 ¢1; east longitude (degrees)
. - _-‘ : 9 .
TP2 tan ¢, cz,zlsz,z‘ [(Cz,z’sz,z) + 1]
PH2 ¢2; east longitude (radians)
SPH2 g8in ¢2
CPH2 cos ¢2
P22 moment of inertia about ¢2
PHI2 9,5 east longitude (degrees)
PHMIN minimum value of moment of inertia
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Table 2--continued

Noz::xzi:zure Explanation
Inﬁegers
ISN number of séta of spherical harmonic inputs to
be Tun ,
ISC Tun counter
MIN =]l; Pll is a minimum

m2: P22 ig a minimum




=36~ '

uea8oag sojuomivy TeOTIaydg Jo SUFINOI , NIVH, 30 weaSerq moli--f 9Iqel

Av vd'ed’24714

JINAWDD

*0=Nsld
L+W-N=WI1

[ [+1=1}=

" 1=(1)V1dD
"0=(1)wlis
o=()Wv13

) L (DVLIOD (DS
ou:vﬁzknl..knm_ ) =
O=INWN [)V1HIFLNIWOOD

1+DN=LON ,

L+HIN=1IN

o

S3A

{ 03" 194D (r’'n4’341’ Lyd

‘NWNIN‘DON :avay

®ON @
(0L gy

(Lavis )



-37-

penuj3uo)--¢ 3TqEL

SIA WIT=1 sl N

:-dséﬁo@&
ON
0=y <003 (1M1 V1)
ON
—— 1=, (0" o3 (1-1)4

?_-.a-z.zv:-eﬁeuro |

ON

. AcO.GM
O (- )v100)4

¢
Ly e



(DdHL
3LNdWDD

‘0=NSIid 13§
(1)d :31NdWDD

penuTiuoD--¢ STqRL

ON

RSN é.

| (NIWOD'(N)WIS
3INdWOD

" L=Ws |

zmsé.mi_vzw |

94’64
FINWGDD




-39~

penujluc)-—¢ STGEL

SIA

L+ =T

(r'ne’ir’ v =
:31NdWOD Ly

(rvda‘(r)1vdy
33INdWODD

"0=(r)1vds
*1=(rvdv




penutIuod-—¢ a1qe]

WNSS ‘'WNSD|
3INdWOD

*0=WNSS

"0=WNSsJ

ISN®D
JINAWPD

SIA

ISNOD“£4
31INdWDD

{0 ' 53 "W)4




wll~-

(1-O3 4Ll
*ANV NWN
O3 INWN)4

psnuy3luo)~-f 9TqRl

NWS=(41S1)SIS
NWD=(4151)SI1D

[L+HINWN=INWN

NWS‘NWD'W’N
1M

NWS'NWD
331NdWDD




ENTRY

C00=CI5(1) C22=CiS(4)
C20=CIS(2) S21=515(3)
C21=CIS(3) $22=515(4)

WRITE: COMPUTE: T WRITE:
€00, C20,C21, EM1, EM2, EM3 |——=\ EM1, EM2, EM3
C22,521,522 EM4., EM5, EM6 EM4, EM5, EMS
COMPUTE:
A,B,C,D,
Q R, TEST
» WRITE:
i@rAPg; E: = AF(TEST ERROR
' MESSAGE
0 .
RETURN
COMPUTE:
$1,71,22,23,
XPOLE,YPOLE,
ZPOLE
WRITE: g@
ERROR

COMPUTE:

o Y1,Y2,Y3, | |
21,22,73,
AMIN,BMAX

B

Table 4-~Flow Diagram of "TENSR" subroutine of Spherical Harmonics Program
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©

YES
<JF(AMIN.EQ.Z1.AND.BMAX.EQ.Z2 YPOLE=Z3

NO

YES —
<_JF(AMIN.EQ.Z1.AND.BMAX. EQ.Z3] YP(DLF.:ZZ!

NO

YES
F(AMIN.EQ.Z2.AND.BMAX.EQ.Z1) = YPOLE=Z3!

NO

YES
<JF(AMIN.EQ.Z2,AND.BMAX, EQ.Z3) = P®LE=Z]!

— NO

— s
—TEAMIN. EQ. Z3.AND. BMAX. EQ. Z1) =~ u[YPPLE=Z2

NO

—

~——

YES e
<JF(AMIN.EQ.Z3.AND.BMAX. EQ.Z2 YPOLE=Z1

NO

XPOLE=AMIN
ZPOLE=BMAX

Table 4~-Continued



bty

]

COMPUTE:
H1,H2,H3,X3,X2,X],
H4,H5,H6, X6, X5, X4,
H7,H8,H9,X9,X8,X7,

$1,CALP1,CBET1,CGAMI,
$2,CALP2, CBET2, CGAM2,
$3,CALP3,CBET3, CGAM3,
AML1,AML2,AML3,
TTHAT,THA1

COMPUTE:
IF(TTHAID>—=——=THA1=T -THA1 | AML11,AML12
0,+ }
B - JAMLTI=2Tr+AMLI1
v FAMLT D= MLI2Z=AMLTT-Tr
COMPUTE:
TTHA2, THA2 0,+
COMPUTE:
[F(TTHA2) >—=——=THA2=TY -THA2) 1 AM& LAML22|
0,+
' - AMLZI=IT+AMLZ]
F(AML2] “AmL22=AmL21-T1
COMPUTE: :
TTHA3, THA3 0,+
) COMPUTE:
F(TTHA3 THA3=TY -THA3) AML31,AML32
0,+ |
| b= o AML31=2T+AML31
AML32=AML31-T |
0,+

Table 4-—Continued



COMPUTE:
THTA11,THTA12,
THTA21,THTA22,
THTA31,THTA32,

X,Y,TP1,PH1,
SPH1,CPH1,P11,
PHIT,TP2,PH2,
SPH2,CPH2, P22,
PHI2, PHMIN

IF(PHMIN. EQ.P11

-
[F(PHMIN. EQ. P2 YES TMIN=Z

NO

-K WRITE:
. XPOLE,AML11,THTAI1,AMLI2, THTA12,
' YPOLE,AML21,THTA21,AML22, THTA22,
\ZPOLE,AML31, THTA31,AML32, THTA32

<G TP(1015,1016), MIN=>——

WRITE:
P22,PHI2,
P11,PHI

=2
WRITE:
\PH,PHH, 7 *fR?rJURN
P22, PHI2 ,

Table 4~-Continued



C SPHERLCAL HARMONICS 1O DEGREE SEUARES .
DIMENSION THYAUL9)2STITA(L9YCOTALLS) gFLAML 3T71,8(18, 386),5M(19)
AL} CGOMLL 3750001 37 THPL18),4008LT 36).6PaALL 3614018, 36)
COMMON FL18:36) 3RUN{IRIwCIS(S)+5TS(4D
C NC=NQ OF VALUES OF COLAT CONSIDERED, sb=ND OF £AST LONG
ICCR=-1
READLS, 7000} I1LC
TOOO  FORMATILG)
2050 1CCK=T0CK+]
ITLICCR.TQ.ICCY CaLL E£XiIY
READ{9,200L) (RUN{ID)I0=1,18}
2001 FORMAT(1844)
READ(5,2003) NCNLoNMN, IPRTLITR
2003 FORMAT(5]14)
READ(52033) ((F{led)od=laNL) gl=1sNLY
2033 FORMATILIEF4.2)
IFUIPRT LU CALL PRNY
WAlITELHe2039)
2039 FORMATUIHL s 11X 35HCDEFFICIERNTS OF SPHERICAL HARMONICLS)
WRITE(&,2040)
040 FORMATIIHO o LI X IMNe 7X s LHM 99X e IHONM 3 L1 X o 3HSNM)
ML I=NL+1
MO I=NC+]
MENT=0
ELEC=6.,28318/FLCATINL)
THLU=3.14159/FLOATINC)
THYA(L) =0,
}.‘Li\?‘%( 1}3{30
SITA(1Y=0.
CoTatlY=1.
C FURM SERIES OF THETAS, LAMBDAS, SINES AND COSINES FOR P CALC.
DO10G I=29NC 1
THTA{ ) =THTAL{ I-1)4THCC
SITALIY=SINLTHTALLY)
100 COTACII=COS{THTACLY)
D0 20C J=2,:NL 1Y
200 ELAMI U= LAMI J-10+FLCO
C FORM SUMMATION PART OF Py RELATED TO ACTUAL THETAS, WHEN R=0, SUBS=|
C GEY VALUE OF M AND N, FORM ALL FACTORIALS, THEN Sum, THEM ¢
3000 READIS,2028) NebMyISTR
2028 FORMAT(314)}
LIM=h~Mel
Fi15U=0.
DO 40C I=l.nC1
Oﬂ 5&9 infLiﬁ
IFi=M+{L~1)
IFLIFLL.EQ.O) G 7O 1
IFXi=1
DO 2 [l=l.1IF1L
2 IFRI=IFRY%E]
O FLI=1FNY :

164 1F2=8~({L~1}
IFLIF2.EQ40) BG IQ 3
IFX2=1
DO & FislelF2

4 XFX?M{FXE@il

Table 5-~Listing of "MAIN" routine of Spherical Harmonics Program |



FasiFX2
106 [E3=N=M=ill~1)
1?(1?3»&9-0? bg T{} %
TEX3=1
LO & fl=1,1F3

& JEXI=IFX3%1Y

F3=1Fx3
108 [Fa=L~}

IFLIF4.£Q.0) GO TO 7
IFKg=1
DD. 8 fi=l,iF4

8 {FXas]FX4%L]
Fa=1FX4
.»WD 'TG "3

i Fl=1.
GO 10 104

3 F2=1le
GO 70 106

5% Fizle.

GO TO 1048

T Fa=1,

G IFIN=M={L~1) ) EQO) GO Tﬁ 10
IFUICOTA{ )10 .EG.C. ) GO TO L1
G={COTA{ 1)~ L) ¥e{N-M=~(L-1))

60 T0 11
111 €=0.
GO 10 11 '
16 O=1,
1L IFL-1).EQ.0) G0 TO 42
IFLICOTA(TI 41 ) EDCed GO TO 112
=(COTALL Y+ 1 (L -1)
GO YO 13
112 R=0,
GO TG 13
12 R=1.
13 HASU={QARIA{F1%F2%T35F &)
FISUsFISUsHARY
SO0 COMYIMUE
L SUMMATION PART OF P NOW COMPLETE
{FS5=N-M
IFLIFS.EQ-0) GO TGO 14
IFX5=1
00 15 1i= 111?5
15“1?X8*i¥%§*11
=[FX5
L10 IF&@%*M
IF(1F6.EQ.0) QQ ra 16
IFX6=1
po 17 KXMIsiF&
1 1Fx6axrx&$i1 |
' Fe=[FX6
GO 10 a0L
14 FEsl.
. BO %0 lIQ
16 Fe=l. o
~%‘l I?%N Q.01 GQ ﬁw@ﬁ@

i £ e £
B

Table 5--Continued




~4 8

IF(STITALTI ) ochiata) HO TU 403
SBL1)=STITAal L) kM
GO0 1Y 404
‘5(}2 SM( ; )aiw
60 TG 404
4C3 SMI1}=0.
44 TF(N.EQ.0) GO TO 405
TTN=2%%N
GC TO 406
4G% TIN=1.
406 PLT)=FO3F6RSMITI*FISU/TTN
Flsu=il.
400 CONTINUE ‘ c
ALLL PS ARE CAL. AND STORED RELAVIVE TO THETAS AT THIS POINT
EM=M
DO 600 J=1sNL1
SIMNLOII=SIN(EMSELAMJ) )
600 COMLENI=COS(ENMRELARTI)])
DO TOO §=3,4NC
TGO THRUII={(PLIIRSITALD) +P{ I+ 1) *50TALTI+1))/2,
IF(M.EQ.T) GO 10 801
00 800 J=1,NL
APAL(IY=1COML{JI+CONLLG+1) ) /2.
BOG BPALLJI={SIMLIJI+SIMLIJ+1))/2.
60 TO 301
801 00O 802 J=1sKL
Arat (dl=l.
802 BPAL(J)=0,
901 DO 900 I=1.NC
DO 900 J=1,MN
aliqadl= F{39J’*7WP(I)*ﬁPAL(J;*TﬁCO*ELCQ
00 BlI,d¥=F{l ) *THP(T)23PAL (IR THOORELCO
IF{M.EQ.O) 6O TR 21

LF7=N .
IF(IFT.EC.0) 50 T 18
1FX7=1

\ D0 19 11=1,1{F7
Y9 IFXT=1EXT¥]]

FT=1FX7
GG Tg 20
18 Fi=1, '
20 CONST=(FLOAT{2%N41)1%F 7)/16.283L9%F6)
GO 10 22 '

21 CONST={FLOAT{2%N+1))/12.566306
22  CSUM=(,
SSUM=0.
00 1800 I=1,mC
DO 1000 Jd=1eHL
COUM=CSUM+A{T » )
1000 SSUM=SSUN+8(T 442
CHN=CSUMRCONST
SHN=SSUMKCONMST \ ; S SRR
HRITEL64+20410 Nyﬂgﬁﬁﬁ,ﬁﬁ% S e
2041 FORMAT{IHO,10X,1246X, 1?.&x,19&12 ﬁfaxalﬁﬁlzaﬁl Sl
IFUISTR.EQ.0¥6G0 TH 3020 '
CIS{ISTR}“CWN -

. Table S5--Continued




3 ag

£I$£§§7v3M$&N B |
3@3@ NENERNMNTEL

1F¢Nww:,&q,&mﬁ.awm,zrx ,eaai; Q&kL teus%

LF(NMNTLEQ.NHN) 6O TO 3050

GO T0.360C v ;

BN




SU&&GUTY%E Pﬁ&f

¢ SPMERICAL HARMONICS 10 DEGREE SQUAKES -
COMMON F(la.ab:.ﬁumxxax,ﬂIS{Al,ﬁzsfaa

2005 FORMAT(1H
2006 FORMAT(LH
2007 FORMATULM
2008 FORMAT(1H
2009 FORMAT{LH
2025 FORMAT(LH
2010 FORMAT(IH
2026 FORMAT ¢ IH
2011 FORMAT(IH
2027 FORMAT(IH
2012 FORMAT{1H
2013 FORMAT(1H
2029 FORMAT(LH
2014 FORMAT(1H
2030 FORMATIIM

2015 FORMATIIH

2016 FORMAT(LH
2031 FORMAT{1IH
2017 FORMATLIH
2016 FORMAT(1H
2019 FORMAT(1H

2020 FORMAT(LH

2021 FORMAT(1H
2022 FORMAT(1H
2023 FORMAT(1IR

« 10X 1HO)
s I pZHT0)
v K¢ 2H20)
+ IX 5 2HZO0)
-*K»ZH#ﬁl B
¢ 5K IHC s TX 49 (F4, BtEX))
,§K11M573x ZHEGY .
v%31iﬁL,7Kg§(F4‘2vzx)3
e SX o 1RA $ 3X « ZHEQ)
P3XgIHT e TR 9B (F4. 242X )

25X LHI 3K ¢ 2HTG )}

e 59 1HU » 3X 4 2H80) :

$5X e LHD ¢ TR 94 F 4. 242%X))

» 5% LME o 3X s 2490}

e b3 KoV F4.2:2%1)

'ﬁX11H“12ﬁ03HiQQi

53Xy LHT 42X+ 3H110)

'SXQIHH 7%;@(?4 2&2”’}

v9X g LHE o 2% ¢ 31120}
53;1Hﬁw?X§3H3303

e BX, 34140

28X 5 3HLSG)

2 BX 3160

9 BX ¢ 3IBLT0)

» 8% 5 3H180)

YOWRITELG,2002) (RUMIEDG ¢ ID=1417)
2002 FORMAT(IH1(17A4}
WRITEL6,2034)

2034 FﬁRM&T(lHO,E&X:Z?HE&ST LONGITUDE - Lhﬁﬁﬁ)

WRITE(642035%

2035 FQQM&?(lﬁﬂy12%11ﬂ0!ﬁ£92“l6041QZRZUQQX:2”30q4x12H4014x'ﬁnﬁﬁywxyzﬁd

AeaX o 2HTC o4 X e 2HB0 44Ky 2HIU)

WRITE(645.2005)

WRITE(64,2030)
URITE(6,2006)
HWRITEL 62030}
WRITE 62001
WRITE(6,2030)

WRITE(6,2008)

WRITE( 6420300

CHAITE(E,.2009)

HWRITE(6,2025)
RRITE(6,2010)
THRITEL6,2026)

%ﬁ

Table 6~-listing of

CORRITE(6420010
WRLTEL 6, 2027)
%'ﬁﬂ:?ﬁ%&.zﬁiaﬁ
o OHRITELESR02T)
ﬁRiTEfﬁw?ﬂl%@“
;ﬁﬁifﬁtﬁ729¢93‘
&1 14}

lFi%yf’iiﬁlwqi
iFf?v!J;im¥v9’
(F4341)4121,9)

f?i«;l3t¥3lggﬁ |
(F15 13 eia1¢9)
:F@a‘z;,xmx,wa'gi_
;x#x?.za ZWI;?{5  5
xrta,z:.th.qafgﬂff
?{ﬁ

fgaiiviniogiﬁ

“PRNT" gubroutine of Sphericsl Harmonics Program




- wﬂﬁai?ﬁfﬁfuﬁ)
 HRITE(6,2019)

' WRITELE,2030%
CWRITE(6+20200
WRITEL6,2030)
CWRITEL642021)

2&36 FGRRAT(IHQ@ilX EH?G'ax 3“108,3% BHllGaﬁX*BHlZG,3X03H13093X'%Ni4ﬁ1
IXs3H150,3X93H16043%, %Ml?@,3xq3ﬁ130)

s

HRITE(H,2030)

WRITE( 642022)

WREITELb,2030)
HRITE( 642023

) (FILal 1) s,
i‘ﬁ$l$’ii’lml&?{ﬂfif;;‘;
{Fit 1&¢i 3‘ , i‘#‘;igj

(Fil?vi?;l*it??“

'iﬁflﬁal’ﬁlﬂvaQ

ﬁ&iTﬁ!&,ZG@&%iﬁUNliD?v!QWlnl?l

WRITE(642034)
WRITE(642036)

WRITE(6,42005)
WRITE{&,20300
WRITEL 6420063
WRITE(H,2030)
WRITE(692007)
WRITE( 620300
WRITE(642008)
WRITEL6,2030)

HRITE(6,2009)

WRITEL6,2025)
BRIYEL6:20100
WRITEL{S42026)

WRITE(6,20110

URITE{6,2027)

WRITEL6.2082)

WRITE( 6420273
WRITE(6,2013)
WRITE(642029)
WRITE(6,2014)
WRITE{6y2030)
WRITE(642615)
WRITE(6,2030)

WRITE(642016)

WRITE(6+20313
WRITE(692017)
WRITET6,202T)

HWRITEL6,20186)

WRITELB42030)

HRITE{6+2019)

ﬁﬂ!?ﬁ!&r?ﬁ%ﬁa‘
WRITE(6420200
WRITE (620301
,‘wﬁi?ﬁfﬁviﬂzll.
WRITE(A 42030}
 (3%§17§($:2@33§

(FUlo1), E=10518)
(F12,10,1=10,18)
(F13:1)41=10,18)
IF{4,11;4¥£0.18}
(F(5,1)41=10,18)
{Fl691),1=10,18)
(FUT5014,0510,18)

(F{8y1Y51=10,18)

(F{9,1)ei=10,181

(FULO,10,1510,18)

(F{11¢1141=10,18)
(FL1241) ¢1=10418)

(FU13,1),1=10418)
;ﬁ&l@s:#;zaiﬂ.iai‘
(FULS, 1T, 1216,18)
tﬁ%&a,i;%tﬁiﬁkia;‘
(FUI7)10,1=10,18)

%, 9



%ﬁlr&(ﬁmf ]
ﬁﬁ!f&{ﬁaaﬂﬁa?

ﬁklfﬁlﬁnzﬁﬂ?ﬁ’
WRKYE(&0293$1

WRITE(642008)
WRITE {6,2030)
WRITE (642009)
WRITE(6420260
WRITE(652010)
KRITEL6,2026)

WREITELH,2011)

HRITE(6,2027)

WRITE( 620128

WRITEL6,2027)
HR1TE(6,2013)

WRITE(6,2029)

WRITE( 6420149

WRLITEL642030)

CHRITEL6.,2015%
HRITEl6,2030)
HRITE(6,2016)
CHWRITE(6.2031)
WRITE(6,201LT)

WRITEL6,2027)
wuz%ﬁ:agzox 3

WRITE(6,2030)
mRITﬁf&tﬁﬁlﬂi

WRITE(652008)
WRITE(6,2030)

V(F159i3»imL®127§:

1?41@;13&1@1993?)
(F!hl:l&:iwi?vz?)‘, | e
V(Fil%f&!g&mlﬂwZY’f\t;{f‘;Lgf{? ~

154&.x3,£w1a;z?auf
(Fl2414, rnia,zvx   
(F£3yI@:iwL94§?t4ﬁ“ ¢
(Ft&,l&,imiq,27§i} ;‘i_:; ,me 

1?(@&!@11&)9137)

UFL 74130 E19,27)
xﬁra’:;,imié,avi
(F(ﬁtlﬁviwlq,ZTQ

igxiﬁtl}»§“i99375‘




ti*wﬁazfﬁf&sxaae%
L HRIYE (8420093
O MRITEL{6.2025)
CWRITEL6+2010)
TWRITE(642026)
U MRITEL6420119

WRITE( 6420210

WRITEL6,2012)
HWRITE(®,2027)

WRITE{6,2013)
WRITE( 66,2029}

WREITE(6,2014)

CHRITE(6,2030)
WRITE((’MZ‘ZQI?’@
WRITEL6,2030)
WAITE(542016}

WRITELG6,20317

WRITE(6,2017)
WRITE(6,2027)
WRITE(6,20180
WRITE (6420300
WRITEC 642019
WRITE(6,20300
WRITE(6,2020)
WRITEL6,20300
WRITELS,20219
WRITE (642030}
WRITE(6,2022)
WRETE{6,20300
WRETE(6,2023)
RETURN

EnND -

{Fikaiaqixxa.%a$ff“'f m
:fxs,xzyxaza,aa{§t"

(Fl6, 1)y 1= za,3611i
(FAT71) 412264363

(FUBy1) 02284361

LF9,1) 4 1228,36)

(FU10s13+1228,36)
LEU1ke0) +1=25436)
AFL12,1140228436)
(FE1341) 9E=28,36)
(FlidsI)s1=28,38)
{F415,1) 01220,36)
(FA1641)41528436)
IFULT41) 41228, 381

(F(lﬁvlfyl“?@oB&&



SURBROUTINF TENSR
C TENSOR OF INERTIA
COMMON FLLB.36) RUNTLAYLCEST(4,:515(4)
CCO=C15(1)
L20=C(5(2})
C2i=01813)
L22=015{4}
Sc1=816{4}
$272=5154{4)
Z FORMATILH L T6HTEST OF O%%3¢P2%? YIELDS A BOSITIVE VALUE - ONE REAL
1 AND THO IMAGCINARY ROGTS)
3 FORMAT(IH ,S58HR [S NEGATIVE, CALCULATION STOPPED, RETURN TO MalnN P
LRAOGRAM )
PRINT 1000
1000 FORMATIIML3IHOPHERICAL HARMONIC COEFFICIENTS)Y
PRINT 1001 ’
1001 FORMATUIIMO a T o 3HCUU o TX s IMC20 o TX o INC 2L o TX o 3HC 22, TX o 3MS2 1 TX 3HS22)
1002 FORMATIIH, 22X 6{3%3FT7.8)4/7)
WRATTE LG, L0023 LO0ClU 28022455214 522
EMl=C20
gzt #C224C20
EM3i=2,.8022
L= p, %522
EFS=L21
Frin=521
11 PRINT <0
90 FORMAT(IHOGISHMATRIX FLLMENTSI
PRINT 91
Q1 FORMATLIIHO, TXs 3HMI L o T o 3HMZ 2 T 31iMAT 45X o THMLIZ2=2M2Y o 3K THM13=M3 ), 3!
L THPZ23=M32)
WRITE(£LD02) ERL EMz s EMILEMG ,EME, EME
PRINT 107
107 ¥ORMAT{IHC, 62HPRINCEIPAL MOMENTS LCAST LOMG COLATITUDE EAST LONG
1COLATITUDED
PRINT 108 .
108 FORMATIIH (60H OF INERTIA {OEG) {DEG) (DEGY
I {OBGY 1}
A'"'T‘lc
Boe{EMI+EM24EM3) 4.
Cmm{=CMIdEM2 = ML EEMI-EMP2HEMACEMGFL 24 EMORR2 ¢ EMOE%2) /3,
L {EMTHEMIHEM I+ 2, REMLFEMOSEME~EM] REMASH2 T MPZREME XX 2L MAREMS4RRD)
Q=AM Pk p
P, 8% 3, ®#A*RHC~A%F %]} ) ~Rux]
TESTa e I+p ek
TECTEST) 12413514
14 PRINT 2
GO TO 32
l,j STeR&x{1l./73.)
Zi=(2.%#51I-L1/A
I12={=-SI~B})/A
L3=12
XPOLE=AMINI{Z),72)
PO E=AMAXKL{21,72)
YPOLE=ZPOLE
G0 TD 199
12 P=ARS({RI/SURAT{-Qu%])

X«,Tabla 7--Listing of "TENSR" subroutine of Spherical Harmonics Program



55

PART=ATANISURT( 1. -P%%2} /P /3.
TE(RY 15,1640 7
L6 PRINT 3
GO TG 32
15 LOFF==2 %S5GRT(~-§)
GG TO 102
17T COUF=2.%5LRT{~Q)

102 Y1=(COL¥=LOS{(PART}
Ye=COEF#COS{PART 2. 094395
Y3:(OFFHCUS{PART+ 4. L BBTY)
11={¥Y1-B3/4A
12=4Y2~-8BY/4
L3={Y 3-8} /74

19 AMIN=AMINI{ZI1+224+73)
PMAX=AMAXLLZY,72:243)
FF{AMIN FL 21 s ANDBMAX JEQLZ2) YPOLE=ZS
IFlAaMINCERZLs ANDSBMAYLFGL23) YPOU E=22
IF{AMIN LR 72 AND . uMAXcFGaZ1) YPOLE=Z3
TFLAMINER I ARD JLBAXFQeZ3) YPOLE=ZL
TFCAMIN L Gel3 o ANDBMAK, Q.21 YPOLE=Z?
IF AR IR FLoa 73 o AND o LAY £ 0WZ2) YPOLE=Z1
XPCLE=AMEN
IPGLE=BMAX

19¢ Rl=FEMi-XPOLE
HZ=EMZ2-XPOLE
H3=(H3-%P0LE
A3l ~FHO4EMAFEME/HZ2 I/ (M- EM6R42/HE)
2=t Ra—EMLE XY F1H42
Xi=1a(

H4=EM1-YPOLE

HB=EM2-YPOLE

He&=FM3I-YPOLE

K= {—EMS+EMAETENE/HS Y [ {HE~ERERE2IHS)
XSz {~EH4~FMERXAY IHY

Xl":':lec

Fil=Eml-2P0LF

HE=EMe-~TPLE

BY=EMI- TP |
XG={~CMSHEMAELME/HE) [ {HT~ i Mok R2/HK)
XB={~rM4—~EMERXG) /HB

XKiI=1.0Q
SEI=SARTIXLAw24XA28528 XA %%2)
CalLPl=%x1/81

CREETI=X2/51

CGAMI=X3/51
SI=SORTIXGEEZ FARLE 2+ A 65%2 )
CALEZ2=X4fSE

CBETZ2=48/52

CGAMZ=XKE/SE
SA=SURTAATHE2 ¢+ R AT 24 KT HRD )
CALP3=XT/53

CHET3=X8/53

CoAMBI=X9/S3
AMLI=ATANZICRETLLCALPL)
AFLZ=ATANZICBETZ.CALP2Z)
AL 3= ATANZL{CRET ,Calesl

t
!
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31

34

38

26
27

30

33

35

36

37

TTHAL=SQRT{ Le~COAML®%2) /CGANL

~56-

THAL=ATAN{ABS ( TTHALD)
TFITTHALY 28427427
THAL=%3.141593-THAL
TTHAZ=SORT( L ~COAMRER2 ) /0 GAMZ
THAZ=ATAN(ABS(TTHAZY)

S TF(TTHAZY 28B429,29
28
29

THAZ=3, 141593-THAZ
TTHAB=B0RT{ 1« ~COAM3%%2§ 70 GAMS
THAZ=ATAN(ABS(TTHASY ) ‘
IF(TTHASY 30,31,.31

THAZ=3, 141593 -THAY"

AMLLI1=57,29578%AMLY
L AMLI2=180.4AMLIL

TFCAMLLY) 33,34,34
AML 112360, +AML1Y
AML12=AML11~180.
AML 2157, 295 TTHARLY

AML22=180. +AML21

IFCAML21Y 35,436,360
AML21=350. +ARL21
AMLZ22AML21~160.
AML 31572957 BSAML3
AML32= 1BO.+AML 31
IF(AMLILY) 37,38,28

AML31=350. +AHL 31
AML32=AML31~180,

THTALL=57,285 764 TH4L

- THTAL2=180.~THTALL

THTAZ1=5T,295 7B THA2
THTA22=2180.~THTAZL
THTAZL=57. 295 18%THA3
rwra&aaiaﬁ.wfﬁvaal
X=C221822
Y=SORTIX¥%2+10)
ToL=X+y .
PHISATANCTRLY

L BPHI=SEN(PHIY

CPHI=COSIPHL)

PLI={L00+, 1% 200 /3. +1. I*CZZ*(S?H1*¢2~CPH1*$2}+.2*522*5FH1*£¢Hi)I4
PHIL=57.29578+PH] ,

TP2eX-Y »
PH2=3.141593-ATAN(ABS( TPZ)

$PH2=S TN PH2)

CPHZ=COST PHZD
Fz?wi6&3+.i#£2ﬁ@13.*t.1*522*1S?ﬁz**z—L?HZ**Z)*.2*522*5?H2*C?H2)fe
PHI2=5T.29578%PH2

PHRIN=AMINL{P11,P22)

IF(PHMINLEGLPLLY MIN=1

TELPHMINGEDSP22) MIN=2

WRITE(641010) XPOLE,AMLIL, THTALL,AMLL2, THTALZ

- WRITE(61001) YPOLEAML21, THTA2LAML22,THTAZ2

WRIFEL6,1002) Z@Q£E7$ML31gYH?&?iv&M&3217HTR3Z

1010 FORMAT{IHO.SH X g FBaBe 344 (3ALFBLBY
lﬁll ?ﬂﬂ%%??lﬁﬁaﬁﬂ Y- fF&&ﬁtﬁXr#fﬁX'fﬁ 34
19&2 Fﬁﬁﬁﬁ?flﬁ@#ﬁ“ l »?ﬁaﬁoaxoéi3XoF343))




o
1014
1015

1017
,(lﬁ&ﬂ‘

10616
o3z

T

- PRINT 1013

FORMAT (1HO, SLHNDHENT OF INERTIA LW
PRINT 1014

FORMAT(IH o294 EQUATCRLAL PLANE
60 TO (101541016) 4MIN
WRITE(6,1017) $22,PHI2

FORMATCLHQL TH  MAX  4F8.5,8XFR.3}

WRITE(6510190 P1L,PHIL
FORMAT{LIHO,TH  MIN  FB.5,8X,F8.3)
RETURN ' -

WRITF(6, 1017 PLYPHEL
WRITEL6,1019) P22,PHIZ

RETURN

END

Table 7--Continued
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Table 8--Symbols Used in "MAIN" Routine of Moon Modeling Program

Fortran
Nomenclature Explanation
Variables
cn,m' coefficients of spherical harmonic represen-
tation of the distribution of surface features
SNMP 8 '
n,m .
HI differences in elevation between maria and continents;
and between circular basins and areas outside of basins
TITLE label for identification
CNM c
n,m ) coefficients of a surface spherical harmonic
SNM s \ expansion of the gravity field
n,m
EN n
, (2n+1)C
n,m C v
n,m
1738,
HC H dn /m -——---3‘
(2n+)s
SPT d S 1
n,m 8 '
n,m
HS H=d 1738,
n,m 3.
Integers
N n
M m
IMAX number of n,m combinations considered
J counter for the distributions considered (4)
K counter for the sets of data considered (3)
L counter for HI
LMAX number of HI considered




Table 9--Symbols Used in "COMPT" subroutine of Moon Modeling Program

Foxrtran
Nomenclature Explanation
Variables
A radius of moon
Rl p,» average deneity of moon
R2 Pys density of nickel-iron
R3 pmm, density of material beneath maria or circular basins
R4 Per density of crustal material
H HI (see '"MAIN" explanation)
T t, thickness of nickel-iron layer
DELRA Ap(a), density contrast
S
X
intermediate storage locations for quadratic
yA ftcalcuiation of additional density contrasts
sQQ
$Q J
D depth of compensation
DRA Ap(a), density contrast
Integers
L counter for HI
LMAX number of HI considered




